F2015 Topics Perverse Sheaves and Fundamental Lemmas

نویسنده

  • WEI ZHANG
چکیده

[1] A. Arabia, Faisceaux pervers sur les varie?te?s alge?briques complexes. Correspondance de Springer, [2] A. Arabia, Introduction a‘ l?homologie d?intersection [3] A. Beilinson, J. Bernstein, P. Deligne, Faisceaux pervers, in: Analyse et topologie sur les espaces singuliers, Aste?risque 100, 1982. [4] A. Borel et. al., Intersection Cohomology, Birka?user Progress in Math. 50, 1984, SB 2083. [5] T. Braden, R. MacPherson, From moment graphs to intersection cohomology, Math. Ann. 321 (2001), no. 3, 533?551. [6] Mark Andrea A. de Cataldo and Luca Migliorini. The decomposition theorem, perverse sheaves and the topology of algebraic maps. Bulletin of the AMS, 46(4), October 2009. [7] E. Frenkel, “Lectures on the Langlands Program and Conformal Field Theory”, in Frontiers in Number Theory, Physics and Geometry II, eds. P. Cartier, et al., pp. 387-536, Springer Verlag, 2007 [8] E. Frenkel, Langlands Program, trace formulas, and their geometrization, Bull. Amer. Math. Soc. 50 (2013), 1-55 Bull. Amer. Math. Soc. 50 (2013), 1-55 [9] M. Goresky, R. MacPherson, Intersection homology theory, Topology 19 (1980), 135?162. [10] M. Goresky, R. MacPherson, Intersection Homology II, Invent. Math. 72, no. 1 (1983), 77-129. [11] R. Kiehl, R. Weissauer, Weil conjectures, perverse sheaves and l-adic Fourier transform, Springer Erg. Math. 42, 2001. [12] F. Kirwan, Introduction to intersection homology theory, Pitman Research Notes in Math., Longman 1988. [13] R. Hotta, K. Takeuchi, T. Tanisaki, D-Modules, Perverse Sheaves, and Representation Theory, Birkha?user Progress in Math. 236 2007 [14] G. Laumon and B. C. Ngo, Le lemme fondamental pour les groupes unitaires. [15] David Nadler The geometric nature of the fundamental lemma Bull. Amer. Math. Soc. 49 (2012), 1-50. [16] K. Rietsch, An introduction to perverse sheaves, arXiv:math/0307349v1 [17] Z. Yun, The fundamental lemma of Jacquet–Rallis in positive characteristics, Duke Math. J. 156 (2011), no. 2, 167–228.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Affine Cohomological Transforms, Perversity, and Monodromy

It is now nearly a decade since the theories of perverse sheaves and of the /adic Fourier transform came into being and gave fundamental new insights into the behavior of additive character sums over finite fields. Most of these insights were spellings out of the basic fact that the Fourier transform of a perverse sheaf is itself a perverse sheaf, a statement that amounts to a succession of van...

متن کامل

External tensor product of categories of perverse sheaves

Under some assumptions we prove that the Deligne tensor product of categories of constructible perverse sheaves on pseudomanifolds X and Y is the category of constructible perverse sheaves on X × Y . The Deligne external tensor product functor is identified with the geometrical external tensor product.

متن کامل

2 6 N ov 1 99 9 External tensor product of categories of perverse sheaves

Under some assumptions we prove that the Deligne tensor product of categories of constructible perverse sheaves on pseudomanifolds X and Y is the category of constructible perverse sheaves on X × Y . The Deligne external tensor product functor is identified with the geometrical external tensor product.

متن کامل

N ov 2 00 3 External tensor product of categories of perverse sheaves

Under some assumptions we prove that the Deligne tensor product of categories of constructible perverse sheaves on pseudomanifolds X and Y is the category of constructible perverse sheaves on X × Y . The Deligne external tensor product functor is identified with the geometrical external tensor product.

متن کامل

ar X iv : m at h / 05 09 44 0 v 1 [ m at h . A G ] 1 9 Se p 20 05 MICROLOCAL PERVERSE SHEAVES

Microlocal perverse sheaves form a stack on the cotangent bundle T ∗X of a complex manifold that is the analogue of the stack of perverse sheaves on the manifold X itself. We give an embedding of the stack of microlocal perverse sheaves into a simpler stack on T ∗X which we call melded Morse systems. The category of melded Morse systems is elementary, in the sense that an object is a collection...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015